曲靖 调查 厅局 图片站 问政 桂刊
政务 社会 体育 通讯员 娱乐 爆料
红豆社区 红豆村 博客 漫画  3C  交友 汽车 保险
红豆相亲 房产 健康 理财 会展 商城 新知 游戏
柳州 梧州 防城港 
玉林 百色 北海  
 
IBM Watson视觉识别新高度,采用GPUs分布式网络看懂图片内涵
http://fengjiujun5.cn  2019/7/5 15:14:01  

IBM Watson视觉识别新高度,采用GPUs分布式网络看懂图片内涵。过去十年,人们前所未有地创造出大量视觉内容——从社交媒体到娱乐和制造业,甚至到那些远离日常生活的绕地球卫星。随着近期认知科技的进步,比如大规模的深层学习和基于语义层面的可视化建模,我们开始加速提高我们洞悉大数据的能力,此前雷锋网也做过很多报道。但是追求更高水平的数据细节,对于科学家而言仍然是一个挑战。

雷锋网消息,IBM 近日迈出了重要一步,对Watson视觉识别图像分类器(Watson Visual Recognition)的处理能力进行了更新,它能让用户理解图像或者是视频中的内容。这一系统内置数万视觉标签,使其常用词汇量比之前的模式大 2.5 倍。内置词汇量的扩大,使其识别特殊视觉概念的能力大大提高。

新植入的视觉标签涵盖了很多种类的视觉概念,其中包括物体、人、地点、活动、场景以及其它一些关于细致特点类型的词汇,比如特定的颜色。

每一类词汇的涉及深度都有所增加,也增加了很多特定的视觉描述词汇。这使得新植入的分类器能够对典型图片进行更加精确详细地分类。同时,它也以分类等级为基础,对图片增加了一般性描述——比如知道马是一种动物。

该服务也能通过识别细小差别来对图片进行详细描述。比如图片显示“人们在愉快地就餐”,那么它能够识别出,该场景不只是在餐馆吃饭,而是能根据视觉形象更加详细地描述出这是在啤酒园里。比如图片显示这是 GAIR 全球人工智能与机器人峰会的会场,机器也能识别出背景图上的雷锋网 Logo。

\

视觉识别能达到这么精确的水平,是因为它现在能够平均为每个图像至少贴上九个描述性标签——之前平均只有两到三个。

IBM 机器视觉负责人 Matthew Hill 表示:“我们之所以能取得这么大的进步,是因为我们用各种各样的摄影镜头获得的大量图片进行了实验,并且采用了图形处理器(GPUs)的分布式网络。 Watson 将所有这些信息都融合到具有数万标签的卷积神经网络。我们也研发出新的推论方法:利用语义推理优化该服务对图片的描述,使其更加特殊、突出、准确。”

当然,有些企业有自己的自定义数据,他们想为这些数据创造自己的分类器。Watson视觉识别也有自定义开发和分类的特点。当需要该服务需要为某一领域学习一套新的图像标签时(像产品组合),开发者可以进行快速开发,通过提供示例图片植入新的自定义模型。然后,应用程序可以利用自定义模型,结合最基本的服务,用一般描述词汇和特定领域的描述词汇对图片进行描述。自定义分类器也可以通过加入新的示例图片来进行升级。

Hill 表示,视觉识别的发展是 IBM 持续提高 Watson 认知领域能力的重要一步。它是基于世界范围内对视觉理解的不断研发。视觉理解取得了一系列突破性进展,包括利用图像分析改善对皮肤癌患者的治疗,改进图像自动生成字幕技术以及突破人工智能和创造性的限制,制作世界上第一步认知电影预告片等。

如果想了解更多信息,你可以点击这里,获得更多关于视觉识别服务的信息。雷锋网也将对这一研究做后续关注。


相关阅读:
汽车抵押 www.jhddh.com
请选择您看到这篇新闻时的心情
0
0
0
0
0